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The development of drug-resistant viruses limits the therapeutic success of anti-HIV therapies.
Some of these genetic HIV-variants display complex mutational patterns in their pol gene that
codes for protease and reverse transcriptase, the most investigated molecular targets for
antiretroviral therapy. In this paper, we present a computational structure-based approach to
predict the resistance of a HIV-1 protease strain to amprenavir by calculating the interaction
energy of the drug with HIV-1 protease. By considering the interaction energy per residue, we
can identify what residue mutations contribute to drug-resistance. This approach is presented
here as a structure-based tool for the prediction of resistance of HIV-1 protease toward
amprenavir, with a view to use the drug-protein interaction-energy pattern in a lead-
optimization procedure for the discovery of new anti-HIV drugs.

Introduction

The human immunodeficiency virus type 1 aspartic
protease (HIV-1 PR) is one of the most important
enzymes in anti-AIDS drug design. Inactivation of this
enzyme causes the production of immature, noninfec-
tious viral particles and hence blocks further HIV-
infection. Currently, seven drugs are approved for
treatment of HIV infection by blocking the activity of
HIV-1 protease. Despite the enormous investigations in
viral therapy and combination of therapies, treatment
success is limited due to the evolution of drug-resistant
variants.1 In infected patients, viral populations can
rapidly develop resistance to drugs under the antiret-
roviral pressure of the patients’ treatment regimens. In
addition, because of the high degree of cross-resistance
to HIV-1 protease drugs, infecting viruses may develop
resistance to drugs other than those to which they have
been exposed. In this context, resistance testing has
become an important diagnostic tool in the management
of HIV infections.2,3 Resistance information can be either
directly assessed, by phenotypic assays in which recom-
binant virus techniques directly measure viral replica-
tion in the presence of increasing drug concentrations,4,5

or deduced from genotypic assays that are based on
sequencing of the relevant parts of the viral genome.3
Interpretation of the sequence information of genotypic
assays is becoming increasingly difficult because the
influence of a certain mutation on drug resistance
cannot be considered independently of other mutations,
but different types of interactions must be taken into
account.6,7 In the past few years, several attempts have
been published to predict in silico the phenotypic
behavior of HIV-1 protease mutants. Some algorithms
are based upon carefully chosen rules8,9 extracted from
large databases or pattern searches on such large
datasets.10 Other methods use more statistically ad-
vanced techniques such as neural networks,11,12 support

vector machines,13 cluster analysis,14 decision trees,15,16

or linear discriminant analysis.17 All these prediction
methods are based upon statistical techniques and their
accuracy is largely dependent on the size and complexity
of the training set. They are retrospective in nature and
must frequently be updated to accommodate new mu-
tational patterns and new antiviral drugs. Especially
for new or rare mutational patterns, the results of these
methods may be inaccurate. To overcome the disadvan-
tages of statistical-based prediction methods, several
attempts have been made to develop computational
technologies based on molecular modeling of HIV-1
protease complexes and to build quantitative prediction
models for HIV-1 protease inhibitor activity.18 Given
recent improvements in search algorithms and energy
functions, computational docking methods have become
a valuable tool to probe the interaction between an
enzyme and its inhibitors.19 Several studies have been
published about the implications of mutations on the
three-dimensional structure of HIV-1 protease,20-22

mostly based on molecular dynamics studies. The three-
dimensional structures of resistant HIV-1 protease
strains often show rearrangements, resulting in a
decrease in van der Waals interactions with the inhibi-
tor and, consequently, weaker binding to the mutated
HIV-1 protease strains. While a few years ago only
qualitative predictions were made for resistant muta-
tions,23 the last publications show a change toward more
quantitative structure-based predictions.24,25 These meth-
ods not only lead to valuable predictions of drug-
resistant mutations but also improve the understanding
of the structural and energetic basis for enzyme-
substrate interactions.26 Furthermore, the development
of successful strategies for structure-based molecular
design of new drugs requires the ability to accurately
predict binding affinities from structural considerations.

In this study, we present a structure-based compu-
tational method to quantitatively predict the resistance
or sensitivity of an HIV-1 protease strain toward am-
prenavir (Figure 1). Our approach is a variation of the
linear interaction energy method,27 augmented with
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protein residue dependence for its activity prediction.
It was originally developed for wild-type activity predic-
tion of HIV-1 protease25 and HIV-1 reverse tran-
scriptase.28 The method differs from other structure-
based prediction attempts in two ways. First, instead
of using the total interaction energy between the
enzyme and the drug, we consider the interaction energy
at residue level; i.e., for each residue of HIV-1 protease,
we count its individual interaction energy with the drug.
Second, since we consider the interaction energy at the
residue level, we take the asymmetry of the complex
into account. HIV-1 protease is a symmetric homodimer,
with the possible exception of the protonation state of
the catalytic site,29 but after binding an asymmetrical
drug, the interaction with the drug is different for both
chains30 and consequently the energy pattern becomes
also asymmetrical. These two key points are crucial for
our method and open the possibility to use the results
with a view to lead optimization purposes.

We do not only predict whether a given HIV-1
protease strain is resistant toward a given drug or not,
but can also provide additional information as what
residues are responsible for resistance and need atten-
tion in structure-based drug design. We believe that this
information will prove its value in future drug discovery
projects. Since a good quantitative prediction of resis-
tance is crucial in the first place, we limit the scope of
this paper to this subject.

Experimental Section

We used the X-ray structure of HIV-1 protease complexed
with amprenavir31 (PDB code 1hpv) as a template for the
generation of 2980 closely related homology models. Each of
these models is built by modifying amino acids in the X-ray
structure according to point mutations found in one of the
corresponding 2980 patient HIV-1 protease strains used in this
study. The geometry of the mutated amino acids is kept as
close as possible to the X-ray structure, by maintaining the
torsional angles where applicable and by setting sterically
feasible values otherwise. The protein structure is subse-
quently allowed to accommodate the induced geometry differ-
ences by a local, whole complex, conjugated gradient, and
truncated Newton optimization. After the minimization, the
nonbonded interaction energy of each residue with the inhibi-
tors is calculated. This energy is computed as separate
Coulomb, van der Waals, and hydrogen-bond contribution.
Moreover, we distinguish between main-chain and side-chain
interactions. This results in six energy terms per residue.
These terms are computed with a consistent force field
parametrization that is similar to MMFF9432,33 in its functional
form but slightly modified to allow for directional H-bonds.28

The phenotype generation, geometry optimization, and energy
computations were performed on an 80-processor cluster and
required 60 h of run time. Important to note is also the
asymmetry of the interactions. Since both the catalytic site of
protease and amprenavir are asymmetrical, the interactions
with both chains of the HIV-1 protein will be different,
resulting in a different interaction pattern for the two HIV-1
protease monomers constituting the biologically active form.

Results and Discussion
Composition of the Dataset. The dataset is a

phenotypically stratified selection of 2980 randomly
chosen HIV-1 protease strains, extracted from an in-
house database of HIV-1 protease sequences. Each of
the genotypes is unique in the dataset and has at least
one, but mostly more, mutations compared to the wild-
type sequence (Figure 2).

The number of mutated positions compared to the
wild-type sequence of HIV-1 protease (Figure 2) varies
from 1 to 27. The complete distribution of the number
of mutations in the dataset is listed in Table 1.

For each of the considered genotypes, the suscepti-
bitility to amprenavir is compared to the inhibition of
amprenavir to the wild-type sequence. We call the fold
resistance (FR) for a given HIV-1 protease sequence the
relative increase or decrease in inhibition by amprenavir
compared to the inhibitory effect of the same drug to
the reference sequence. For statistical reasons, and
because EC50 and binding constants depend on the
exponential of energy differences, we will work with the
pFR or the negative base-10 logarithm of the fold
resistance:

The EC50 values are measured with Antivirogram, a
commercially available phenotypic assay.34 A positive
pFR value reflects a lower EC50 of amprenavir to the
mutant sequence, compared to the EC50 of amprenavir
to the wild-type sequence. It indicates an increased
susceptibility of the HIV-protease strain toward am-
prenavir, while a negative pFR points to a more am-
prenavir-resistant HIV-1 protease strain. In the whole
dataset of 2980 unique strains, the pFR ranges from
hypersensitive values (pFR > +0.94) to very resistant
values (pFR < -2.1). A total of 1085 or 36% of the
genotypes have a pFR value larger than 0 and are thus
hypersensitive. The distribution of pFR in the dataset
is shown in Figure 3.

Figure 1. Structure of amprenavir.

Figure 2. Wild-type sequence of HIV-1 protease (GenBank
ID: NP 705926).

Table 1. Distribution of the Number of Mutations in the
Dataset of 2980 HIV-1 Protease Strains

no. of
mutations

no. in
dataset

no. of
mutations

no. in
dataset

1 1 15 187
2 20 16 140
3 50 17 135
4 107 18 90
5 137 19 84
6 158 20 50
7 186 21 27
8 185 22 21
9 208 23 14

10 214 24 4
11 260 25 1
12 248 26 2
13 257 27 1
14 193

pFR ) -log10(FR) ) -log10((EC50)mutant

(EC50)WT
) (1)
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Intuitively, one could expect that more mutations lead
to a higher resistance, and by analyzing the dataset,
we indeed see that there is a tendency that highly
mutated sequences show more resistance (Figure 4).
However, to become resistant the virus needs to find a
compromise between inhibition and fitness. Highly
mutated genotypes can loose their activity or show a
decreased fitness by which the normal enzymatic activ-
ity of the HIV-1 protease is disturbed. This balance
between inhibition and activity/fitness is the reason
there is no perfect correlation between resistance and
the number of mutations. Moreover, in the dataset we
see resistant strains only having two mutations. For the
virus it is crucial to find those positions that can be
mutated to lead to resistance and have a minimal effect
on the fitness. The power of our approach here is to point
out those key mutations in HIV-1 protease to circum-
vent the inhibitory effect of amprenavir.

Each HIV-1 protease strain in the dataset is trans-
formed into a three-dimensional complex with am-
prenavir by the protocol described in the Experimental
Section. Afterward, a drug-protein interaction energy
map is derived from each 3D complex of each HIV-1
protease strain. The interaction energy is split in three
terms: a Coulombic, electrostatic, and hydrogen-bond
energy contribution. We further distinguish these three
energy terms for backbone and side-chain contributions,
resulting in six energy contributions for each residue.
The total energy matrix thus consists of six columns,
one for each counted energy contribution, and 198 rows,
a row for each residue in the HIV-1 protease dimer. We
want to underline that in contrast to all other prediction

algorithms, we can distinguish all 198 residues. We
know that HIV-1 protease is a homodimer with two
symmetrical chains, but although the sequence similar-
ity is conserved, the 2-fold symmetry disappears after
binding an asymmetrical ligand. As a consequence, the
drug-interaction energy of a residue in one chain will
be different than the drug-interaction energy of its
counterpart in the other chain. It is also known that
structural water molecules can play a crucial role in the
binding of HIV-1 protease inhibitors.35 Although they
are important and despite the fact that their presence
is taken into account when deriving the three-dimen-
sional models, their interaction energy with the drug
is not part of the prediction model. Since they cannot
be mutated and therefore not be directly used by the
protein to circumvent inhibition, we chose not to use
them as variables for prediction, but their presence in
the three-dimensional models will have an influence on
the drug-interaction energy of neighboring residues.
When modifying this approach for drug discovery pur-
poses, structural water molecules can be considered
either as part of the protein and incorporated as extra
residues in the drug-interaction energy matrix or as part
of the ligand. An example of an interaction-energy
matrix is given in Figure 5.

All 2980 energy matrices are merged into one dataset
of 2980 data points (HIV-1 protease strains) and 198 ×
6 ) 1188 variables (energy terms). Before extracting a
linear prediction model, we removed 596 data points,
or 20% of the dataset, to use them as a blind test
afterward. The strains in this test set were chosen on a
random base, so that the distribution of pFR and
number of mutations is representative for the rest of
the sample. From the 2384 (80% of the total data set)
kept data points in the training set, we searched for the
best linear prediction function. This is done in SAS,36

by a stepwise variable selection approach. The result is
a linear sum of energy contribution each with a weigh-
ing factor:

Figure 3. Distribution of the resistance in the dataset of 2980
HIV-1 protease strains.

Figure 4. Amprenavir resistance as function of the number
of mutations in HIV-1 protease.

Figure 5. Energy matrix of amprenavir with a randomly
chosen HIV-1 protease strain.

pFRpredicted ) â0 + ∑
j)1

198

∑
k)1

6

âjkEjk (2)
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where Ejk is the drug-interaction energy term k of
residue j, âjk is the weight on the interaction energy
contribution k of residue j, and â0 is the intercept.

The prediction on the training set resulted in a
squared correlation coefficient of 0.84 and a root mean
square error (rmse) of 0.31, which is close to the
Antivirogram reproducibility error.34 Afterward, we
applied the model on the test set, resulting in a
correlation coefficient of 0.76 and a rmse of 0.38. We
recognize that the prediction accuracy on the test set
decreased and thus we suspect our prediction model of
overfitting, but the correlation on the test set is still high
enough to perform reliable predictions. The prediction
model used 136 variables from the 1188 that maximally
can be chosen. We agree that this number of variables
is rather large, and therefore, we derived a new model
with a limited number of input variables. Moreover, we
saw that only 41 variables are responsible for a squared
correlation coefficient of 0.80 or 41 variables can explain
95% of the prediction power of the total model. There-
fore, we derived a new model with only these 41 most
important parameters as input. The new prediction
equation contains 40 significant variables and has a
squared correlation coefficient on the training set of
0.794 with a corresponding rmse of 0.345. On the test
set, the squared correlation coefficient only slightly
drops to 0.783, while the rmse remains almost constant
(0.348). A summary of the statistics of both models is
given in Table 2.

It is clear that the bias of the first model (model 1)
with the 136 variables disappeared after reducing the
number of variables in the second model (model 2). The
almost constant correlation coefficient and rmse for the
training and test set prove the robustness of model 2.
The predicted pFR versus the experimental value for
this model is shown in Figures 6 and 7 for the training
and test set, respectively.

The contribution of the variables to the total predic-
tion power of the linear model is shown in Figure 8 for
the 10 most important variables.

The combination of these 10 variables contributes for
more than 90% of the total predictive power of the

model. The weight factors for the input variables (energy
contributions) are not always 1, indicating that a
selection of variables instead of an equation with
weighted energy terms would not give a good prediction
model. A perfect correlation is not to be expected
between the resistance (pFR) and a simple full weight
sum of the energy variables for several reasons. First,
our interaction terms only consider enthalpy effects
instead of free interaction energy; second, our experi-
mental values result from a cell-based assay that is less
accurate than an enzymatic assay; and third, the
inhibitory effect of amprenavir on each HIV-protease
strain will also be influenced by the changed kinetics
of the different enzyme genotypes.

We further want to focus on three striking observa-
tions that further support the unique strength of
structure-based resistance predictions. First, by consid-
ering only the 10 most important contributions, six are
interactions where the backbone is involved. This can
be surprising since most prediction algorithms focus on
the nature of the side-chain mutations, but it is logical
that also backbone energies are affected by side-chain
mutations. What we see here reflects the results of a
drug-design process. Enzyme inhibitors are chemically
constructed to have their crucial interactions with the
protein backbone to prevent escaping inhibition by
mutations of the side chains. From the 40 variables used
in the prediction model, 22 involve backbone interac-
tions and 18 are side-chain interactions with the drug.
This again emphasizes the difference or our approach
to the classical prediction algorithms. The nature of the
mutations is transformed to a list of energy changes,
and instead of focusing on the side-chain mutations
themselves, we rather look at the energy changes at the

Table 2. Comparison of Two Models, with Different Number of
Variables

model 1 model 2

training set test set training set test set

no. of variables 136 40
r2 0.84 0.76 0.794 0.783
rmse 0.31 0.38 0.345 0.348

Figure 6. Correlation between predicted and measured
resistance for the training set.

Figure 7. Correlation between predicted and measured
resistance for the test set.

Figure 8. Information contribution of the 10 most important
interaction energy values.
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mutated positions and their environment. Second, if we
consider the 10 most important residues positions, then
eight are known as positions that cause resistance to
amprenavir.37 If we compare the whole list of most
important residue interactions, almost 60% of the
variables are on positions that have a sequence shift of
at most one residue to positions that are known resis-
tance mutations for amprenavir. The fact that we do
not always predict the position itself is logical, since a
mutation on a particular position will have an effect on
the neighboring positions. This again confirms the value
of the structure-based approach and its use for lead
optimization purposes. Third, contributions of residues
in one chain are not the same as their counterpart in
the other chain. If we annotate the 2 HIV-1 protease
chains A and B, then from the 10 most important
contributions six are related to residues in the A-chain,
while the other four are contributions from other
residues in the B-chain. This asymmetry in our predic-
tion model reflects the asymmetry of HIV-1 protease
after binding an asymmetrical drug. To the best of our
knowledge, this is the first time a prediction tool is
described that is able to point out the asymmetry of the
HIV-1 protease after drug binding.

The method described here is developed for lead
optimization by structural knowledge extraction from
resistance predictions. A necessary condition to reach
this goal is to perform reliable resistance predictions,
which was the topic of this paper. We showed that by
considering the drug-interaction energy per residue, an
accurate and reliable prediction model can be derived.

Acknowledgment. The authors wish to thank Kurt
Hertogs and his team for providing the experimental
data. Herwig Van Marck, Tim Van den Bulcke, and
Hans Vermeiren are acknowledged for the stimulating
discussions.

Note Added after ASAP Publication. This manu-
script was released ASAP on 11/16/2004 with an error
in the location of a data point in Table 2. The correct
version was posted on 11/19/2004.

References
(1) Shafer, R. W.; Kantor, R.; Gonzales, M. J. The genetic basis of

HIV-1 resistance to reverse transcriptase and protease inhibi-
tors. AIDS Rev. 2000, 2, 211-228.

(2) Perrin, L.; Telenti, A. HIV treatment failure: Testing for HIV
resistance in clinical practice. Science 1998, 280, 1871-1873.

(3) Vandamme, A. M.; Van Laethem, K.; De Clerq, E. Managing
resistance to anti-HIV drugs: An important consideration for
effective disease management. Drugs 1999, 57, 337-361.

(4) Hertogs, K.; de Bethune, M.-P.; Miller, V.; Ivens, T.; Schel, P.;
van Cauwenberghe, A.; van den Eynde, C.; van Gerwen, V.;
Azijn, H.; van Houtte, M. A rapid method for simultaneous
detection of phenotypic resistance to inhibitors of protease and
reverse transcriptase in recombinant human immunodeficiency
virus type I isolates form patients treated with antiretroviral
drugs. Antimicrob. Agents Chemother. 1998, 42, 269-276.

(5) Walter, H.; Schmidt, B.; Korn, K.; Vandamme, A. M.; Harrer,
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